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A.c. impedance spectroscopy was used to investigate the properties of  a stainless steel tube, heavily 
scaled with calcium carbonate, and exposed to an aqueous environment. An equivalent circuit was 
developed to quantitatively model the observed behaviour and the results provide a possible basis for 
indirect monitoring of  the scaling of  pipes which cannot be directly viewed. 

1. Introduction 

A ubiquitous and highly expensive industrial problem 
relates to the blocking and failure of process or plant 
equipment and associated pipework by means of the 
prolonged deposition of scale particularly from hard- 
water supplies. The composition of this scale is often 
predominantly calcium carbonate (calcite, CaCO 3). In 
this paper we investigate the a.c. impedance behaviour 
of a stainless steel pipe internally coated with a thick 
layer o f  calcite scale with a view to assessing this 
experimental methodology for the indirect sensing/ 
monitoring of scale build-up so as to permit remedy 
(descaling) before catastrophe (rupture). 

2. Experimental details 

2.1. Instrumentation 

A.c. impedance measurements were made via a Solar- 
tron Instruments 1250 Frequency Response Analyser 
(Schlumberger Electronics Ltd, Farnborough, UK) 
used with a Solartron Instruments 1286 Electro- 
chemical Interface employed in potentiostat mode. 
These were controlled by a BBC Master microcom- 
puter which collected data subsequently displayed as 
an imaginary against real impedance plot using a 
Hewlett Packard 7470A plotter or transferred to a 
VAX mainframe computer for further analysis. A.c. 
signals of amplitude 5mV and frequency 0.01 Hz- 
65 kHz were used. 

2.2 Materials and electrodes 

Measurements were made on an internally scaled 
stainless steel tube of internal diameter 0.540 cm and 
length 14.5cm generously donated by Four Square 
Ltd (Basingstoke, UK). The scale was formed by 
passing a hot ( ~ 60 °C) solution of hard water through 
the tube for a period of several weeks. The mean 
thickness of the scale, measured using a travelling 
microscope, was 0.083 cm. The external surface of the 
tube, including the end annulus, was coated in a low 
melting point wax, which insulated the unscaled sur- 
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faces of the metal. This was immersed to varying 
depths in a solution of KNO 3 supporting electrolyte 
(0.5 M) containing trace calcium and carbonate ions 
(~ 3 mM in each) to prevent the dissolution of the 
scale. A separate section of unscaled tubing acted as a 
control. The reference electrode used was a saturated 
calomel electrode (SCE) (K401, Radiometer, Copen- 
hagen) and the counter electrode a graphite rod or 
platinum gauze sited behind a glass sinter. These elec- 
trodes were located externally to the steel tube. The 
d.c. potential applied to the tube was 0.0V with 
respect to the reference electrode, where no net d.c. 
current flowed. Solutions were degassed with argon 
and maintained at 25 °C using a water bath. 

2.3. Modelling 

The impedance behaviour of equivalent circuits which 
defied ready analytical solution was found using 
SPICE (version 2G.5) which is a general purpose 
circuit simulation program for nonlinear d.c. and 
transient, and linear a.c. analyses. This program was 
run on a Norsk Data ND540 mainframe computer. 
Using SPICE, the required circuit was modelled by 
numbering the nodes where components were con- 
nected together and specifying which nodes each com- 
ponent was connected to, the type of component (e.g. 
resistor, capacitor) and the component's value. The 
node at which an alternating voltage was applied was 
also specified. The output of the program yielded the 
real and imaginary components, as well as magnitude, 
of the current at this node. Given that the voltage 
applied was set at zero phase, the real and imaginary 
components of the impedance were calculated as 
follows 

I EI ~(I)  I EI ~¢(I) 
Z'  - Z" - 

iii z , 1112 (1) 

where ~(I )  and J ( I )  are the real and imaginary com- 
ponents of the current of magnitude [II generated 
from SPICE. 

For the modelling of transmission lines with 
SPICE, where the resistances and capacitances per 
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unit length are continuous, values of the components 
used were sufficiently small to make the circuit 
effectively continuous (see below). 

Theoretical impedances were compared to exper- 
iment by displaying data on a - Z "  against Z '  plot. 
The magnitude of the circuit components were varied 
to obtain the optimal fit with experiment. 

3. Results and discussion 

3.1. Unscaled tube 

Experiments were first conducted using an unscaled 
stainless steel tube. This was partially immersed in a 
thermostatted electrochemical cell and electrical con- 
tact made with that part of the electrode proud of the 
solution surface and so unimmersed. The outside and 
end of the tube were insulated (see above) so that the 
electrode/electrolyte probed via the a.c. measurements 
was solely that formed at the immersed part of the 
inner surface of the tube. The reference and counter 
electrodes were located externally to the tube. The 
impedance plot obtained with a 0.5 M KNO 3 solution 
is shown in Fig. 1. This shows a 45 ° line at high 
frequencies and a near vertical line at low frequencies 
and an uncompensated solution resistance Ru = 
24.5 f~. Such a response can be modelled with a simple 
finite length open-ended (reflective) transmission line 
(Fig. 2) for which the following analytical equation is 
applicable [1,2] if it is assumed that the interfacial 
impedance is purely capacitative: 

Rt ,~1/2 
Ztm,  = 

x (sinhu - sinu - j (s inhu + sinu)] 

c--osh£ ; c-o- s  ) 
(2) 
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Fig. 1. Impedance plot ( + )  obtained from the internal surface of  an 
unscaled tube immersed to a depth of  2 cm. This has been modelled 
( x )  using the analytical equation for a simple reflective trans- 
mission line with R t = 90f~cm i C t = 21#Fcm -~ and uncom- 
pensated solution resistance of  24.5 fL 

R t 
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Fig. 2. A simple open-ended (reflective) finite length transmission 
line. 

where R* is the resistance and C t the capacitance per 
unit length of transmission line of total length l, and 

u = l(2RtCco) 1/2 (3) 

The best fit of this equation to experiment (l = 2 cm) 
is shown in Fig. 1 and corresponds to the parameters 
R * =  90f~cm -I and C * =  21#Fcm -1. From the 
internal diameter of the tube and the known molar 
c~nductivity of the solution at the ionic strength used 
[3] the resistance per unit length of the solution in the 
tube was calculated as R* = 95 f~ cm i in good agree- 
ment with experiment. The low frequency data was 
almost, but not quite, purely capacitative i.e. the low 
frequency data in Fig. 1 is not quite a vertical line. 
This may be attributed to the surface roughness of the 
electrode [4-8] and can be approximately modelled 
with a constant phase element for which 

2 - 1  = A(jco) ~ (4) 

where A is a frequency independent real constant 
(although a more detailed treatment might allow for a 
fractional phase angle [9]). The exponent ~ = (D - 
l) -l,  where D (2 < D < 3) is the fractal dimension of 
the rough electrode. When D = 2 purely capacitative 
behaviour is obtained, corresponding to a perfectly 
smooth surface, whereas D = 3 gives ~ = 0.5, which 
is the limiting case for a porous electrode [2,10]. 

For a reflective transmission line, the value of the 
real impedance where the impedance plot is vertical, is 
given by the limit of Equation 2 where co ~ 0. Ex- 
panding this equation yields 

= ( R* ~l/2u Rtl 
Zllmm~O \2coct,] 3 -  3 (5) 

Thus at low frequencies the a.c. signal traverses the 
whole length of the transmission line. Consequently 
the validity of this model was further tested by varying 
the extent to which the unscaled tube was immersed in 
the solution. If the tube is immersed deeper into the 
solution, then the total resistance of the transmission 
line is expected to increase, as predicted by Equation 
5. The impedance plots for these experiments are 
shown in Fig. 3 and Fig. 4 shows the fit of Equation 
2 to these results, with R ~ = 95f~cm -1 and C t = 
24 #F cm -1. It is clear that the simple RC transmission 
line provides an accurate equivalent circuit for the 
unscaled tube in this electrode configuration. 

3.2. Scaled tube 

Experiments analogous to those described in Section 
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Fig. 3. Impedance plot showing the response of the unscaled tube 
immersed to depths of l c m  (+) ,  2cm ( x )  and 3cm (~ ) .  

3.1 were carried out on a section of scaled tube. This 
was 14.5 cm long and had a scale layer of  mean thick- 
ness varying from 0.134 cm at the bottom to 0.064 cm 
at the top of  the tube. Figure 5 shows impedance plots 
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Fig. 4. Impedance plot showing the agreement between the exper- 
iment response ( ÷ )  of the unscaled tube immersed to depths of  
(a) 1 cm and (b) 3 cm and the simple transmission line model ( x ) 
with R* = 95f2cm -1 and C* = 24,uFcm 1. 
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Fig. 5. Impedance plot of the scaled tube immersed to a depth of 
1 cm (O), 4cm (o)  and fully immersed ( + )  in a solution of 0.5 M 
KNO 3 . 

for a range of immersion depths varying from com- 
pletely immersed, where the solution meniscus was 
just below the top of  the tube to only 1 cm immersed. 
In each case the mean thickness of scale immersed was 
measured. 

Candidate systems examined to model the 
measured behaviour included an approximate non- 
distributed circuit and two transmission line models as 
explained below. 

3.2.1. Non-distributed circuit. The impedance of  the 
non-distributed circuit, shown in Fig. 6 was derived by 
standard methods: 

R s -- jcoR~ Cs j 
Z = Ru + 1 + (coRsCs) 2 ( D C  i (6) 

where R~ and Cs represent the scale resistance and 
capacitance, and C~ represents the capacitance of the 
electrode-electrolyte interface. The low frequency 
limit of  Equation 6 is Ru + Rs. Fitting of this circuit 
to the experimental data gave reasonable fits at inter- 
mediate frequencies but at high frequencies marked 
disagreement was apparent (Fig. 7a and b). 

3.2.2. Simple transmission line model. Next the simple 

R C  transmission line (Fig. 2) which had successfully 
described the unscaled tube was examined and excel- 
lent agreement obtained for the fully immersed case 
(Fig. 8). 

Cs 

o O 

R s 

Fig. 6. Non-distributed circuit used for analysis of the data in 
Fig. 5 (see text). 
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Fig. 7. Impedance plot showing the poor agreement between the 
impedance response of the scaled tube immersed (a) ! cm ( + )  and 
(b) 4 cm ( + )  and the non distributed circuit ( x ) ,  shown in Fig. 6, 
with: (a) R, = 3501), R S = 850fl, C~ = 98#F  and C i = 277/tF; 
and with (b) R~ = 300~,  R~ = 650~,  C~ = 126#F and 
C~ = 277#F. 

Partial immersion gave reasonable qualitative 
agreement with the model but did not produce the 
expected variation with immersion. Specifically the 
total transmission line resistance, Rtm 1 = Rtl, should 
have been proportional to the immersion depth. 
Instead, as can be seen from the low frequency limit in 
Fig. 5 there is only a slight increase in Rtm I with a 
decrease in immersion depth. Analysis showed that 
the low frequency (0.1-1.0 Hz) capacitance was 
approximately independent of immersion depth which 
suggested that all or most of the scale within the tube 
was wetted (by capillary rise), not just that immersed 
in the solution, and the low frequency data indicated 
a capacitance of 13.8 #F cm 2 in close agreement with 
that of the unscaled tube. 

To test this hypothesis further, the length of the 
scaled tube Was shortened to 7cm and the a.c. 
response measured with the tube completely 

immersed .  Thee procedure was repeated, with the tube 
Shortened further to 3.5cm. The impedance behaviour 
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Fig. 8. Impedance plot showing agreement between data from the 
fully immersed scaled tube ( + )  and the simple transmission 
line model ( × )  with R u = 99~,  R t = 120ff2cm -1 and C* = 
22.8 #F cm - i. 

in the three cases is shown in Fig. 9. From inspection 
it can be seen that the real impedance of the low 
frequency limit is proportional to the tube length in 
these experiments. The associated quantitative analy- 
sis is shown in Fig. 10, from which it is clear that the 
capacitance is also proportional to the length and has 
an average value of 15.0#Fcm -2 (or 25.4~Fcm-l). 
As can be seen from Fig. 11 the a.c. response of a fully 
immersed scaled tube can be modelled by a simple RC 
transmission line. This model will now be extended to 
rationalise the behaviour of the partially immersed 
tube. 
3.2.3. Bipartite transmission line. The data shown in 
Fig. 5 demonstrated that the total transmission line 
r e s i s t a n c e ,  Rtml, increased only slightly as the immersion 
depth decreased. This is to be expected since the resist- 
ance of the wetted scale alone, R~o, is greater than that 
for the 'parallel' combination of solution and scale 
Rss. This was modelled using the SPICE program with 
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Fig. 9. Impedance plot for fully immersed scaled tubes of length 
14.5cm (+) ,  7cm ( x )  and 3.5cm (O). 
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Fig. 12. Bipartite transmission line circuit. 

a transmission line, but instead of a constant resist- 
ance per unit length, the value of R t altered after a 
distance corresponding to the immersion depth (see 
Fig. 12). The model transmission line was constructed 
using 100 resistors and capacitors per centimetre. An 
analytical expression for the impedance of this circuit 
was also derived (see Appendix) and this gave perfect 
agreement with the SPICE program. 

A mean value of  R~s = 124 D cm -] was obtained 
from the fully immersed experimental data, as was 
C t =  25 .4#Fcm -~. The values of Rs*o found to 
optimally fit the experimental data are given in the 
legends to Fig. 13 and excellent agreement is apparent, 
validating the bipartite transmission line model. 

The scale resistance R~o obtained from the partial 
immersion experiments was compared to that estimated 
from the complete immersion data as follows. The 
thickness of the scale layer was measured at the mouth 
of each section of  tube using a travelling microscope 
and hence, a mean scale thickness was calculated for 
each tube length used. Given the conductivity of  the 
electrolyte [3], the resistance per unit length of  the 
solution was calculated. Assuming the resistance of 
the solution and that of  the scale can be treated as 
parallel resistors (to give the measured value of R~s), 
the resistance of  the 'scale only resistor' was estimated 
to be 305 f2cm -1 for the 14.5 cm tube and 268 Dcm -~ 
for the 7 cm tube. This is in excellent agreement with 
the R~o values from the bipartite transmission line 
model, which are 300 ~ cm- 1 and 250 f2 cm-  i, respect- 
ively. These separate numbers arise from a change in 
the mean scale thickness and explain the difference in 
R~o for the two lengths of  tube. 

Further evidence to confirm this model was 
obtained by altering the electrode configuration. The 
reference electrode, a silver wire electrocoated in 
AgBr, was sited inside the scaled tube to negate any 
transmission line effects. Both this and the scaled 
electrode were 3.5cm long and were immersed in a 
solution containing 3 mM Ca(NO3)2, 3 mM K2CO3, 

I mM KBr and 0.513 M KNO 3 . The electrodes were 
used in a two-electrode configuration so that neither 
the current nor potential experienced a transmission 
line. The impedance plot from this experiment was 
essentially purely capacitative. 

4. Conclusions 

It has been shown that the impedance of  a heavily 
scaled tube can be modelled by a transmission line, the 
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Fig. 13. Impedance plots showing the excellent agreement between experimental data (+)  from scaled tubes of differing lengths immersed 
variously as follows and the theoretical bipartite transmission line model ( x ) :  (a) length 14.5cm immersed to depth of 4cm, R~s = 
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(d) length 7cm immersed to depth of I cm, R~s = 124f~cm -~, R~o = 250f~cm -1 and C* = 25 .4#Fcm -1. 

resistance of  which is a combination of  the electrolyte 
resistance in free solution and that in the pores of the 
calcium carbonate scale. The molar conductivity of  
0 .5MKNO3 in the scale pores (A = 55.7 _ 
1.2 S cm2mol -~ mean value calculated from the four 
experiments shown in Fig. 13a-d) is rather less than 
that in free solution (A = 89.24 S cm 2 mol -~ [3]). A.c. 
impedance techniques could therefore be used in con- 
trol systems to monitor in situ the build up of calcium 
carbonate scales in pipework enabling, if necessary, 
shut down on attainment of  critical scale levels. 
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Appendix 

We consider here analytically the bipartite transmission 
line equivalent circuit used to explain the impedance 
response of a scaled tube partially immersed in 
electrolyte. The circuit consists of  an RC transmission 
line whose resistance per unit length, R t, changes at a 
point, x = Is~, corresponding to the solution menis- 
cus. Consider two infinitesimally small sections dx in 
the transmission line either side of the meniscus, as 
shown in Fig. 14. Provided small amplitude alternat- 
ing voltages are used, the current response in linear 
and the impedance is only dependent on the frequency 
co. Thus 

O<<.x<~l~s; 

dE1 dE~ = --I~R~dx ~--d-S + I~R~ = 0 (A1) 
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0 ~ x ~ s ;  

d I ,  - 
E l dI1 E1 
z t  dx ~ - ~ x  + ~ = 0 

and 

d~  

lss ~< x ~ l; 

dE~ 
= - I 2 R : ° d x  => -~x 

l~ <~ x <~ l; 

+ I2R~o = 0 (A3) 

E2 dI2 E2 
d6  = ~ - T d x = > ~ x  + ~-7 = 0 (A4) 

where x is the direction along the transmission line, R~ 
is the resistance per unit length of the first section of 
the transmission line (representing scale and solution), 
R~o is the resistance per unit length of the second 
section (scale only) and Z t the impedance per unit 
length of the electrolyte-electrode interface. 

Combining Equations A1, A2, A3, A4 gives 

0 ~< x ~< Is~; d2II R~s 
dx 2 Z* 11 = 0 

and 

0 ~< x ~< /s~; d2El R~ 
dx 2 Z* El = 0 (A6) 

dE2dx x=0 = 0 (A12) 

(A2) 
together with Equation A11 yields 

A' = B ' e x p ( 2 / ~ )  (113) 

At the boundary x = l~s the potentials must be ident- 
ical, thus 

El(l~) = E2(/~s) (114) 

as must be the current 

1 dE 1 x=/~ - 1 dE 2 x=/~ (A15) 
Rs~ dx R~o dx 

Substituting the terms for E 1 and E2 into these bound- 
ary conditions and solving the simultaneous equations 
yields the pre-exponential factor 

( B = E0exp - lss,/~-7# x 

(A5) 

"~ 2 - - ,  R~°--2/  ~ 1  l 

R t t x so [ Rss 
+ ( x f - ~ s t ° + ~ s )  e p I l ~ s ~ - -  s s ~ ]  

d212 R~o 
lss ~< x ~< 1; dx 2 Zt 12 = 0 (A7) 

d2E2 R~o 
l~, ~< x ~ I; dx 2 Z,  E 2 = 0 (A8) 

xx/ ) 
(A9) 

Solving Equation A6 yields 

O<~x<~ls~; 

El(x) = Aexp - x X / Z  t ]  + Bexp + 

where A and B are defined by the boundary condition 

x = 0; A + B = E0 (A10) 

Similarly Equation A8 gives 

l~<~x<<, l; 

Ez(x) = A'exp - x X/Z*// + B'exp + x 

(All)  

Applying the boundary condition at the other end of 
the transmission line 

v 
( ~ s * o -  x / -~ )exp  L ( 2 , -  /ss) - 2/ss / ~ 1 [  V z* ztA! 

+ (x/~o + x//-R~*~)exp [l~ ~ -  21ss ~/z t ~ ztJ 

+ ( x ~ o -  x f -~)exp  [ ( 2 / -  l J  x/z'J 

+ ,/<)exp [tss 
,J J 

(116) 

The current in the first section of the transmission line 
is described by Equation A1 which with Equation A9 
can be rewritten as 

0 ~< x ~< /~s; 

( B - E )  exp - X x / z , ]  

+ B e x p ( x ~ ) }  (117) 

At the mouth of the tube the current is given by 

1 
I(0) - ~ (2B -- E0) (A18) 

which on substituting Equation A16 yields 
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_ _  

- ( , ~ o  - , / - < )  
F N × e x p / ( 2 , -  Z0s) - 2 l , .  x/z* x/z*J I.-  

-(,/~,*o + ¢-~0 exp r[,,~ ~ _  2'ss x! z* '4 z*J 

+ (x/~o + V/-~) exp [(2, - / s . )  
r 

q z*J I - -  

+ (x/-R~to- x/-~0 exp/'ss 
• L ~1 z t J  

F N ( x ~ t o -  ~ / - ~ , ) e x p / ( 2 / -  /~s) - -  2/~, ,J z* q z*J 
I - .  

r Nsl + (,/-< + ,~*s)exp ['ss - 2ts~ ~/z* ",/z*J 

+ ( ~ o  + x/"-~) exp [(2l - l.s) 
~d 

'4 z*_l L .  

+ ( x ~ o -  x / ~ ) e x p / l , ,  
~/z*J L 

(A19) 

Hence the impedance of the bipartite transmission line 
is given by 

Z2tml ~ ~ X 

(,/-<- ,,#<s)exp [(2t- t~,) N -  2,s~ x/z* x/z* 
L-- 

+ ( ~ o  + ,/-<) exp -[/ss ~ 2/ss 
~/2v - ~/z*J L 

+ ( ~ o  + x / ~ )  exp (2l - /s.) ~/Zt j 

+ (x//-~oo + x//~,t~)exp/l~ 
~d 

~/z*J L 

l: 

(,/-<o- ,/-<) 
Rsto R,\ 

exp I(21 -- l~.) ~ - 21~s ~ 1  

, < 2  R,\ - 

( ~ t o  - x/~s*~)exp [l~ 
Nd 

,,/~/ 
(A20) 

If the impedance Z t in Fig. 14 is replaced by a pure 
capacitance C t then the following substitution can be 
made 

1 
Zr = + j~oC* (A21) 

Given that 

and 

1 
x/J = q~(1 + j )  (A22) 

= ~22 (1 - j) (A23) 

and making the following abbreviations 

0{ = (R~, 1(2 /_  /~s) - 2/~s 
,? f 

2ooCtJ _ X/ Z* ~/ z t J  

(A24) 

(A25) \2coC*] [ N/Z t ~]Z*J 

( R~s ~ 1/2 N 
7 = \2coctJ ( 2 / -  l,,) ~/Z* (126) 

X 

a = \2coC*/I /ms ~/Z, 

Equation A20 becomes 

Z2tml = (1 -- j) \2coCt j 

(A27) 

'(x//~to - x//-~ss) exp [(1 + j)a] 

+ ( ~ o  - x//~,) exp [(1 + j)fl] 

+ (x/~o - x//-~,) exp [(1 + J)7] 

+ ( ~ o  - x/-~) exp [(1 + j)6] 

' -  (xf-~o -- x//-~) exp [(1 + j)~]' 

-- ( ~ o  - x/-R-~*~) exp [(1 + j)fl] 

+ ( ~ o  - x / /~)  exp [(1 + J)7] 

+ (x/~o - ~ s )  exp [(1 + j)6] 

(A28) 

El+dE1 t E1 E2+dE2 , E2 
R ssdx R sodx 

scale and solution ~_ ~ scale only 

x = 0 lss 1 

Fig. 14. Two infinitessimally small sections of the bipartite trans- 
mission line circuit, one either side of X = l,s, which is the point 
corresponding to the solution meniscus. 
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Rewriting in trigonometric form gives 

Z2tml = (1 -- j) \2coC*J 

r ( x / ~ t o -  ~ s ~ ) e :  cos e + (,,/~to + x/~t~)e # cos fi 

+ ( x f ~ * o -  ~ ) e '  cos 7 + ( ~ o -  x/~*~)e a cos 

F ( ~ s t  o - ,~t~)e~ s ine  + (x/~to + ~ t s ) e ~  sin fi 1 

+ J L + (x~*o + x~ t s )  e'j sin 7 + (x~s*o - x/-R~*~) e~ sin cS 

r _  ( ~ o -  ,,/~t~) e~ cos e -  ( ~ t o  + x/~*~)e ~ cos fl 

+ (x/~*o + x/R--~) e' cos 7 + (x / /~ to-  x//~*~) e~ cos 3 

[ ~  (x/~sto - x//-R~*~)e ~ s i n e - - ( x / ~ o  + xSR-~t~)e # sin f17 

+ J (x/~*o + x /~s )  e' sin 7 + (x/~*o - x//~s*~) e~ sin 6 A 

(A29) 

Multiplying the numerator and denominator by the 
complex conjugate of the latter and making the 
following abbreviations 

~COS 1 

( ~ s ~ o -  x//-R~t~)e ~ cos e + (xf~o + x/-R-~*~)e# cos fl 

+ (x/-~*o + x/~*~) e' cos ? + (x~sto - x/~t~)e ~ cos 6 

(A30) 
~ cos2 = 

- (~o - x / -~)e  ~ cos ~ - (,,//-~o + x/~st~) ee cos fl 

+ (x~s*o + ~s t s )  e' cos 7 + (x~*o - x/~*~) e~ cos 6 

(A31) 

~sinl = 

sin e + + sin 

+ (x /~o + x / ~ )  e' sin y + (w/~*o - x//~t0e ~ sin 3 

(A32) 

~ sin2 = 

- ( x / - ~ o o -  x / -~ )  e~ sin e -  (,~s*o + ~ s ) e  # sin fi 

+ (x/-RT + x / ~ ) e  ~ sin ? + (x//~o -- x / -~)e  ~ sin 6 

(A33) 

Equation A29 becomes 

= ( R~s )1/2 
Z2,m, \2coC*// x 

{ (~cosl~cos2 "t- ~sinl:sin2 -'}" ffcos2~sinl - -  :cosl~sin2) } 

+ J(ffcos2Csinl - -  ~coslffsin2 - -  ~coslffcos2 - -  Csinl~sin2 
2 2 (Coos2 + C~in2) 

(A34) 

Using Equation A34, the real and imaginary com- 
ponents of the bipartite transmission line circuit can 
be calculated for any given frequency ~o. 


